

Code Complexity Measuring Machine

Pinnawala A.N.

dept. Information Technology

Sri Lanka Institute of Information

Technology

Kandy, Sri Lanka

it22235824@my.sliit.lk

Gunathilaka H.A.H.V..

dept. Information Technology

Sri Lanka Institute of Information

Technology

Kandy, Sri Lanka

it22219916@my.sliit.lk

Shadhir M.F.M.

dept. Information Technology

Sri Lanka Institute of Information

Technology

Kandy, Sri Lanka

it22237118@my.sliit.lk

Bilal R.A.M.

dept. Information Technology

Sri Lanka Institute of Information

Technology

Kandy, Sri Lanka

it22548900@my.sliit.lk

Abstract—The "Code Complexity Measuring Machine"

project aims to develop a comprehensive tool for assessing and

managing software complexity. This tool integrates multiple

metrics, including time complexity, cyclomatic complexity, and

code size analysis, to provide a holistic view of a software system's

maintainability and performance. By calculating nesting depth,

cyclomatic complexity, and logical statement density, the tool

offers insights into potential improvements and helps developers

visualize complexity issues. Additionally, it features a

collaborative environment where teams can share dashboards,

engage in real-time discussions, and conduct collaborative code

reviews, fostering continuous improvement. This project leverages

established metrics such as McCabe's cyclomatic complexity [1]

and maintainability index [2], along with modern collaborative

features to enhance software development processes.

Keywords— Code Complexity, Cyclomatic Complexity, Time

Complexity, Code Size Analysis, Maintainability Index, Software

Metrics, Collaborative Environment, Real-time Collaboration, Code

Visualization, Software Maintainability

I. INTRODUCTION

As software systems grow in size and complexity, ensuring
maintainability and optimizing performance become
increasingly challenging. Code complexity is a critical factor
influencing these aspects, as it directly affects the ease of
understanding, testing, and modifying code. High complexity
can lead to increased development time, more bugs, and higher
maintenance costs. Therefore, measuring and managing code
complexity is essential for maintaining software quality
throughout its lifecycle.

The "Code Complexity Measuring Machine" addresses this
need by offering a comprehensive set of tools to analyze various
dimensions of code complexity. It focuses on key metrics such
as time complexity, cyclomatic complexity, and code size,
which are crucial for evaluating and improving software
maintainability. Time complexity analysis provides insights into
how the code's runtime scales with input size, helping
developers identify and mitigate performance bottlenecks [3].
Cyclomatic complexity, a metric introduced by McCabe [1],
quantifies the number of linearly independent paths through a
program's source code, offering a measure of its logical
complexity and testing requirements.

In addition to these traditional metrics, the project includes a
detailed code size analysis, which counts logical statements and
calculates the ratio of source lines of code (SLOC) to lines of
code (LOC). This helps developers understand the density and
structure of the code, further informing maintenance strategies
[4]. The maintainability index, as described by Oman and

Hagemeister [2], is also calculated, providing a single composite
score that reflects the overall maintainability of the codebase.

Recognizing the importance of collaboration in software
development, the project integrates features that support real-
time collaboration and code review. Shared dashboards allow
team members to monitor key complexity metrics collectively,
while real-time collaboration tools enable simultaneous
discussions and annotations, similar to platforms like Google
Docs [5]. These features promote continuous feedback and
improvement, ensuring that complexity is managed effectively
throughout the development process.

By combining these analytical tools with collaborative
features, the "Code Complexity Measuring Machine" aims to
enhance the quality and maintainability of software systems,
making it easier for development teams to produce robust,
efficient, and maintainable code.

II. LITERATURE REVIEW

Code complexity has long been recognized as a significant
factor influencing software quality, maintainability, and
reliability. The concept of code complexity encompasses
various dimensions, such as cyclomatic complexity, time
complexity, and code size, each contributing to the overall
understanding of how difficult it is to understand, test, and
modify a software system.

Introduced by McCabe in 1976, cyclomatic complexity is
one of the most widely used metrics for measuring the
complexity of a program’s control flow. It calculates the number
of linearly independent paths through a program’s source code,
which correlates with the number of test cases needed to achieve
full branch coverage [1]. High cyclomatic complexity indicates
a more intricate and potentially error-prone codebase, as it
suggests numerous decision points and complex logic paths.
This metric is essential for identifying overly complex modules
that may benefit from refactoring to improve maintainability.

Time complexity is a fundamental concept in algorithm
analysis, often linked to the performance and efficiency of
software systems. Defined as the relationship between the size
of the input and the time required to execute an algorithm, time
complexity is crucial for predicting how software will scale as
data volumes grow. According to Aho, Hopcroft, and Ullman
[3], optimizing time complexity is vital for ensuring that
software remains responsive and efficient under varying loads.
Tools that measure time complexity help developers understand
potential bottlenecks and optimize code for better performance.

mailto:it22235824@my.sliit.lk
mailto:it22219916@my.sliit.lk
mailto:it22237118@my.sliit.lk
mailto:%20it22548900@my.sliit.lk

Halstead Metrics, introduced by Maurice Halstead in his
seminal 1977 work Elements of Software Science [6],
revolutionized the way code complexity was understood by
providing a mathematical model based on operators and
operands within a software program. Halstead’s key
contribution was the notion that software complexity could be
quantified by analysing the basic operations and symbols used
in the code, rather than relying solely on structural or
algorithmic analysis. Halstead’s metrics are based on simple
counts of the number of unique and total operators and operands.
From these values, five derived measures are calculated,
including program length, volume, vocabulary, difficulty and
effort. These metrics aim to predict the cognitive effort required
for understanding and maintaining a software program.

Loops are one of the most computationally intensive
constructs in programming, and nested loops can exponentially
increase time complexity. The Nested Loop Matrix method
analyses the depth and arrangement of nested loops within a
program to evaluate the structural complexity. Deeply nested
loops often lead to higher time complexity, increasing the
computational cost and runtime of the software. The analysis of
loop structures is particularly important in performance-critical
applications where time complexity plays a significant role.
Aho, Hopcroft, and Ullman [4] emphasize that deeply nested
loops should be minimized for more efficient algorithm design.
Tools that analyse loop structures help identify performance
bottlenecks and suggest optimization strategies, such as
refactoring loops or applying algorithmic improvements.

Lines of Code (LOC) has been a widely used metric in
software engineering for measuring the size of a codebase.
Despite its simplicity, LOC has proven useful in predicting
development and maintenance costs. According to Kafura and
Henry (1981), LOC can serve as a significant factor for
estimating software project costs, particularly in large-scale
systems where understanding code size can influence resource
allocation throughout the project lifecycle. In their work, they
argue that LOC, when combined with other metrics such as
information flow, can provide deeper insights into software
structure and the complexity of interactions within the codebase
[7].

Kan (2002) highlights the continued reliance on LOC as an
industry-standard measure of productivity, despite its well-
documented limitations. While LOC may not accurately reflect
the quality or complexity of code in every case, it remains a
valuable indicator in many environments due to its simplicity
and ease of use. Kan suggests that, when combined with other
metrics like cyclomatic complexity or maintainability indices,
LOC can be a practical tool for managing software quality and
predicting long-term maintenance needs [8].

Halstead (1977) supports the notion that LOC is most
effective when used in conjunction with other structural metrics.
His research emphasizes that LOC alone may not capture the full
complexity of a system but can provide valuable context when
analyzing code characteristics like operational and data
complexity. Halstead’s formulae, which include considerations
such as the number of operators and operands, underscore the
need to pair LOC with other complexity measures to gain a
comprehensive view of code behavior and maintainability [9].

In summary, while LOC may have limitations in isolation,
the evidence from multiple sources suggests that it remains a
critical metric when combined with other measures, especially
for studying the structural and functional characteristics of
software systems.

The size of the code, often measured in Source Lines of Code
(SLOC) or Logical Lines of Code (LLOC), also plays a
significant role in assessing complexity. While larger codebases
are not inherently more complex, they often present challenges
related to maintainability, as noted by Fenton and Pfleeger . The
maintainability index, developed by Oman and Hagemeister,
integrates code size with other factors like cyclomatic
complexity and Halstead metrics to provide a composite score
reflecting how easy the code is to maintain [2]. A lower
maintainability index suggests that the code might require
significant effort to update or debug, highlighting the need for
ongoing code reviews and refactoring.

The Maintainability Index (MI) is a composite metric
designed to provide a single, overall indicator of code
maintainability. It was introduced as part of software quality
evaluation frameworks and is calculated using a combination of
Cyclomatic Complexity, Halstead Volume, and lines of code.
Higher MI values indicate better maintainability, while lower
values signal that the code may be difficult to modify or extend.
According to Microsoft's documentation, MI values range from
0 to 100, with thresholds typically set to highlight critical areas
requiring refactoring [10]. This metric plays a crucial role in
maintainability analysis, particularly in large software projects,
where long-term maintenance is a major concern.

Introduced by McCabe in 1976, Cyclomatic Complexity
measures the number of independent paths through a program's
source code. It quantifies the decision logic, which correlates
with the difficulty of testing and maintaining the software.
Cyclomatic Complexity is computed from the control flow
graph of a program, where nodes represent blocks of code and
edges represent control flow between them. Higher values of
Cyclomatic Complexity suggest that a program is more complex
and error-prone, requiring greater effort to test and maintain
[11]. It is one of the most widely used metrics in modern static
code analysis tools, reflecting its importance in software
engineering practices.

The Halstead Metrics were proposed by Maurice Halstead in
the 1970s to measure the cognitive complexity of software.
Halstead Volume, one of the key metrics, is derived from the
number of operators and operands in the code. This metric is
particularly useful in estimating the mental effort required to
understand a given piece of software. Halstead's theory suggests
that larger volumes indicate higher complexity, which can
negatively affect maintainability, readability, and the potential
for defects [12]. The Halstead Metrics provide a more nuanced
view of software complexity by examining the fundamental
operations in the code rather than just structural elements.

Various tools have been developed to integrate these metrics
into automated software quality checks. By using these metrics
in tandem, modern complexity analysis tools provide developers
with actionable insights into code maintainability, readability,
and testability. These tools often highlight areas of concern and
suggest improvements, helping developers manage technical

debt and ensure code quality throughout the software
development lifecycle.

Collaborative code review is a vital process in modern
software development, enabling teams to work together to
identify issues, ensure code quality, and improve overall
maintainability. In the context of the "Code Complexity
Measuring Machine," collaborative code review goes beyond
traditional review mechanisms by integrating complexity
analysis into the review process itself. This ensures that team
members can simultaneously address both functional
correctness and complexity-related concerns, ultimately
enhancing software robustness and performance.

The collaborative environment is built around shared
dashboards that display key complexity metrics in real time.
These dashboards provide a unified view of the project’s status,
allowing developers to monitor complexity across different
dimensions, such as cyclomatic complexity, time complexity,
and code size. Each developer can view the current state of the
codebase and compare it with previous versions, enabling them
to track the impact of their changes on code complexity.
According to Weibel et al. [13], dashboards in collaborative
systems can significantly improve transparency and team
coordination, ensuring that all members are aligned on project
goals and complexity standards.

Real-time collaboration features allow team members to
simultaneously view and discuss complexity analysis results,
similar to collaborative platforms like Google Docs. Multiple
users can interact with the same set of code and metrics,
facilitating immediate feedback and group decision-making.
Real-time collaboration has been shown to enhance the speed
and effectiveness of code review processes, as discussed by
Storey et al. [14], by enabling multiple reviewers to contribute
simultaneously and resolve issues more efficiently.

Users can add comments and annotations directly to the
complexity analysis results, allowing for in-depth discussions
about specific code issues. These comments are tied to particular
sections of the code or metrics, ensuring that the context is
preserved for future reference. This feature supports
asynchronous collaboration, where developers can leave
feedback for others to review at their convenience. As noted by
Bacchelli and Bird [15], comments in code review are essential
for providing constructive feedback and promoting
understanding among team members.

The system maintains a history of discussions and decisions
related to complexity issues, enabling the team to track the
evolution of the codebase over time. This historical record
serves as a valuable resource for understanding past decisions,
the rationale behind certain design choices, and how complexity
concerns were addressed. Maintaining this history has been
shown to be particularly beneficial in large and distributed
teams, as it helps avoid repeated discussions and
misunderstandings, as highlighted by Rigby et al. [16].

Feedback loops are integrated into the collaborative
environment, allowing developers to provide input on
complexity findings and suggest improvements. These loops
facilitate continuous feedback, where suggestions from team
members are incorporated into future development cycles,

promoting a culture of constant refinement. This approach aligns
with the findings of Bosu et al. [17], who emphasize the
importance of ongoing feedback in improving both code quality
and team collaboration.

In traditional code reviews, the focus is often on
functionality, style, and adherence to coding standards.
However, in this project, code reviews are explicitly focused on
addressing complexity metrics. This ensures that code
maintainability and performance are prioritized from the outset,
reducing technical debt over time. Developers can collectively
analyze the complexity metrics presented on the shared
dashboard and discuss strategies for reducing cyclomatic
complexity, optimizing algorithms, or refactoring large code
segments. This complexity-driven review process has been
shown to significantly improve long-term maintainability, as
documented by Kemerer [18].

In recent years, the importance of collaborative tools in

managing code complexity has gained attention. Weis and Lenk
[18] discuss the benefits of real-time collaborative editing,
which allows multiple developers to work on the same codebase
simultaneously. This approach not only facilitates immediate
feedback but also enables collective decision-making regarding
code structure and complexity. Collaborative code reviews,
supported by shared dashboards and annotations, further
enhance the ability to manage complexity by ensuring that all
team members are aligned on coding standards and best
practices.

Together, these metrics and collaborative tools form the
foundation of the "Code Complexity Measuring Machine." By
integrating cyclomatic complexity, time complexity, and code
size analysis with real-time collaboration features, this project
builds upon existing literature to create a comprehensive
solution for managing software complexity. The goal is to
provide actionable insights that help developers maintain high-
quality codebases, reduce technical debt, and improve the
overall efficiency of the software development process.

III. METHODOLOGY

A. System Overview

The "Code Complexity Measuring Machine" is a software
system designed to assess and manage code complexity through
a range of metrics and real-time collaboration features. The
system is divided into several key modules that calculate metrics
like Lines of Code (LOC), Cyclomatic Complexity, and Logical
Lines of Code (LLOC). It provides a user-friendly interface
where developers can actively collaborate on reviewing and
improving code quality.

Figure 1. Software Quality Metrics

The interface features a dashboard that visualizes various
code metrics through charts and graphs, allowing users to track
the complexity of their code in real time. These visualizations
help identify areas of high complexity that may require
refactoring. Developers can also interact with a live code editor
with integrated syntax highlighting, where multiple users can
work on the same piece of code simultaneously. Each user is
represented by a unique colored cursor, promoting seamless
collaboration.

A comments section allows users to annotate the code with
feedback and suggestions, supporting asynchronous reviews and
team discussions. The system also provides options for
downloading complexity reports and reviewed code using built-
in tools.

The real-time collaboration and visualization features ensure
that the code complexity analysis process is efficient,
transparent, and collaborative.

B. Data Collection and Parsing

The first step involves collecting source code from the
project repository and parsing it using abstract syntax trees
(AST). The ASTs are used to extract relevant information for
each complexity metric, including control flow constructs,
algorithmic structures, and code size.

C. Integrated Complexity Metrics Calculation

After parsing, the framework calculates the cyclomatic
complexity, time complexity, and code size in a single pass.
Cyclomatic complexity is determined by constructing control
flow graphs (CFGs), while time complexity is estimated by
analyzing nested loops and recursive functions. Code size
metrics, including LOC and LLOC, are computed
simultaneously, and the maintainability index is derived using
these metrics.

1) LOC Complexity Calculation
To calculate LOC Complexity in the "Code Complexity

Measuring Machine," the methodology focuses on determining
Source Lines of Code (SLOC) and Logical Lines of Code

(LLOC) as key metrics for assessing code size and complexity.
lang-map will be utilized to detect the programming language of
the code, ensuring language-specific parsing rules are applied
for accurate LOC calculations.

SLOC will be computed by counting all lines of executable
code, while excluding non-functional elements such as
comments and blank lines. LLOC, on the other hand, will focus
on meaningful statements like control structures, function calls,
and expressions that directly affect the program’s behavior. The
system will achieve this by parsing the source code into an
abstract syntax tree (AST), allowing it to analyze the logical
flow and count significant code elements.

The results will be presented through a real-time interface
using React and the CodeMirror editor, which will dynamically
update the LOC metrics as the user edits the code. Additionally,
users can export the LOC data using file-saver and jszip,
allowing for easy download and offline review. This
methodology ensures that both raw code volume and logical
code complexity are accurately measured and visualized.

2) Halstead Metrics Calculation
The Halstead Metrics are calculated based on the operators

and operands identified during the parsing stage. Operators
include arithmetic symbols, logical operators and comparison
operators. Operands include variables, constants, and function
names.

First, the count of operators and operands are taken from the
algorithm. Distinct operators n1 is taken by counting the number
of unique operators and distinct operands n2 is taken by
counting the number of unique operands in the algorithm. The
total operators N1 and total operands N2 are taken by counting
the total number of operators and operands in the algorithm.

Once the operators and operands are counted, five key
metrics are derived. Program length N, volume V, vocabulary n,
difficulty D and effort E are calculated. The relevant equations
to the five key metrics are given below.

 N = N1 + N2 (1)

Equation (1) represents the total number of elements,
operators and operands in the code (N derives program length).

 n = n1 + n2 (2)

Equation (2) represent the total number of unique elements
in the code (n derives program vocabulary).

 V = N ⋅ log2(n) (3)

Equation (3) represent program Volume (V) reflects the size
of the codebase in terms of its information content.

 D = n1 ⋅ N2 (4)

 2 n2

Equation (4) represent program Difficulty(D) measures the
complexity of combining operators and operands.

 E = D ⋅ V (5)

Equation (5) represent program Effort (E) estimates the
amount of mental effort required to understand and maintain the
code.

The derived metrics offer insight into various aspects of the
software’s cognitive complexity:

• High Volume (V): A large program volume often
correlates with higher complexity, indicating a dense or verbose
codebase that could require significant effort to maintain.

• High Difficulty (D): A high difficulty value points to
intricate logic, with complex interactions between operators and
operands. This suggests that understanding the program may
require advanced knowledge or experience.

• High Effort (E): A high effort score implies that the
code is cognitively demanding, requiring more time and
resources to fully comprehend or modify.

3) Nested Loop Matrix Calculation
In this stage, the focus is on evaluating the structural

complexity of the code by analysing loop nesting. Loops,
especially nested loops, can significantly impact the
performance of a program, increasing its time complexity.
Nested Loop Matrix calculation is calculated by following steps:

• A Nested Loop Matrix is created, which represents the
relationship between loops and their nesting depths.

• The matrix rows correspond to the nesting levels (e.g.,
single loop, double loop), while the columns correspond to the
number of occurrences at each level of nesting.

4) Maintainability Index Calculation
The function evaluates code complexity using three well-

established software metrics: Maintainability Index, Cyclomatic
Complexity, and Halstead Volume. These metrics are chosen for
their effectiveness in assessing various aspects of code
maintainability and complexity.

a) Maintainability Index (MI):

The Maintainability Index is used to assess the ease with
which code can be maintained, improved, and extended over
time. It is calculated based on Cyclomatic Complexity, Halstead
Volume, and the total number of lines of code. The index
provides a value in the range of 0 to 100, where higher values
correspond to better maintainability.

The metric originally was calculated as follows [10]:

𝑀𝐼 = 171 − 5.2 × 𝑙𝑛(𝑉𝑉𝑉) − 0.23 × 𝐶𝐶𝐶 − 16.2 ×
𝑙𝑛(𝐿𝑂𝐶)

Where:

• VVV = Halstead Volume

• CCC = Cyclomatic Complexity

• LOC = Lines of Code

The Maintainability Index is classified as follows:

• 0–9 (Red): Low maintainability (high complexity,
requires immediate attention).

• 10–19 (Yellow): Moderate maintainability (code
requires improvement).

• 20–100 (Green): High maintainability (code is
easily maintainable).

Cyclomatic Complexity (CC): Cyclomatic Complexity
measures the number of independent paths through a program.
It is calculated by constructing the control flow graph of the
program and determining the number of linearly independent
paths. High Cyclomatic Complexity indicates a program that is
harder to understand and test. The target is to minimize this
value to reduce the risk of errors and enhance maintainability
[11].

Halstead Volume (HV): Halstead Volume measures the
cognitive complexity required to understand a program by
quantifying the number of operations and operands. It reflects
the information density of the code. Higher Halstead Volume
indicates that more mental effort is needed to comprehend the
code [12].

The system follows a client-server architecture. The user
interface (UI) is developed using React, which provides an
interactive environment for users to submit their code and view
the complexity results. The backend, implemented in Java,
processes the submitted code and computes the Maintainability
Index, Cyclomatic Complexity, and Halstead Volume.

1. Input Submission: The user enters the code into a text
area in the front-end, which is then sent to the backend
via an HTTP POST request using Axios. The backend
is hosted on a local server, and the endpoint /calculate-
maintainability-index is responsible for handling the
complexity calculation request.

2. Response Handling: Upon receiving the request, the
backend calculates the Maintainability Index,
Cyclomatic Complexity, and Halstead Volume. These
values are returned as an array to the front-end, where
they are displayed dynamically. The UI changes color
based on the Maintainability Index values, providing
an intuitive, real-time assessment of code quality:

• Red: Indicates critical maintainability issues (MI
0–9).

• Yellow: Signals moderate maintainability issues
(MI 10–19).

• Green: Denotes good maintainability (MI 20–
100).

5) Error Handling and User Feedback
To ensure robustness, the front-end incorporates error

handling mechanisms. If the complexity check fails (e.g., due to
invalid input or server error), an error message is displayed,
prompting the user to verify the input code. The user can also
clear the input and results via the "Clear" button to reset the tool
for another analysis.

6) Dynamic Feedback Using Code Visualization
The tool uses the Count Up library to present real-time,

animated results for the Maintainability Index, Cyclomatic
Complexity, and Lines of Code. The results are displayed
dynamically on the UI, providing immediate feedback to users
and improving the user experience. Code syntax is highlighted
using Prism, which enhances readability and clarity.w

D. Visualization and Reporting

The results are visualized through a unified dashboard that
displays complexity metrics in real-time. Developers can
interact with the dashboard to drill down into specific modules
or functions, view historical trends, and compare complexity
metrics across different code versions.

E. Real-Time Collaboration and Feedback

The framework supports real-time collaboration by allowing
multiple team members to access the dashboard simultaneously.
Developers can provide feedback directly within the system,
highlighting specific complexity issues or suggesting
improvements. The system maintains a history of feedback and
actions taken, enabling continuous monitoring and refinement
of the code.

The collaborative code review feature of the "Code
Complexity Measuring Machine" will be implemented using
React and Socket.io to enable real-time interaction between
multiple users. Socket.io will handle WebSocket connections,
allowing for instant communication between the server and
clients. This enables users to view changes made by others in
real time, facilitating collaborative discussions and live code
editing. Each user’s actions, such as typing, commenting, or
viewing different parts of the code, will be synchronized across
all participants, ensuring seamless collaboration during code
reviews.

To provide an efficient and intuitive environment for code
editing, CodeMirror will be used as the core library for the in-
browser code editor. CodeMirror supports syntax highlighting
for multiple programming languages and integrates well with
React, making it ideal for an interactive user experience. As
users edit and review code, changes will be captured and shared
in real time using Socket.io, enabling multiple team members to
work together on the same file simultaneously. The lang-map
library will be used to dynamically detect the programming
language being edited, ensuring that the correct syntax
highlighting, and complexity analysis rules are applied based on
the language.

In addition to real-time collaboration, users will have the
option to download the reviewed code or complexity reports for
offline use. This will be facilitated by the file-saver and jszip
libraries. Once a review session is complete, users can generate
a ZIP file of the code and its corresponding complexity analysis
results. The file-saver library will enable users to download files
directly from the browser, while jszip will compress multiple
files into a single package, ensuring efficient file management
and distribution. This combination of real-time interaction and
offline functionality ensures that the collaborative code review
process remains flexible, allowing teams to work both
synchronously and asynchronously as needed.

F. Implementation

The unified framework is built using a combination of Java
for the backend server and JavaScript with React for the front-
end interface. The system is integrated with version control
systems like Git, allowing it to automatically update complexity
metrics as the codebase evolves. Real-time collaboration
features are implemented using Socket.io, enabling seamless
communication and live updates between users.

1) Real-Time Collaboration with Socket.io
Real-time collaboration is a critical component of the

system, implemented using Socket.io. This library allows
seamless, bidirectional communication between the server and
clients, ensuring that updates are reflected immediately for all
users.

Whenever a user interacts with the code editor (e.g., edits
code, adds comments, or performs reviews), these actions are
sent via a WebSocket connection to the server. The server then
broadcasts these changes to other connected users, enabling
them to see the updates in real-time. This feature is particularly
useful for collaborative code reviews, where multiple users can
simultaneously review and comment on code complexity.

2) File Handling with File-Saver
In this system, the File-Saver library is used to allow users

to upload, handle, and interact with multiple source code files in
real time. Instead of generating reports or complexity results, the
File-Saver functionality helps users save their uploaded files
locally after editing or interacting with them, preserving their
changes. This ensures a smooth workflow for users who need to
manage multiple files while working collaboratively.

When users upload multiple source code files to the system,
they can edit, review, or interact with them in real time. To
facilitate saving these files back to the local system with the
changes applied, File-Saver is employed to download the
modified files. This provides a seamless experience, allowing
users to easily manage their source code during collaborative
sessions.

3) Code Execution with Piston API
For dynamic code analysis and execution, the system uses

the Piston API [19]. The Piston API is an open-source multi-
language code execution engine that allows the execution of
code in various languages.

When the user uploads or inputs code into the system, the
backend sends the code to the Piston API for execution and

retrieves results like output, error messages, or performance
metrics (e.g., time taken to execute).

4) Complexity Calculation with Custom Java API
For dynamic code analysis and complexity metric

calculations, the system employs a custom-built Java API
designed to compute various metrics such as Time Complexity,
Cyclomatic Complexity, Lines of Code (LOC), and
Maintainability Index. This Java API was developed in-house to
complement existing solutions like the Piston API, which, while
effective for executing code in multiple languages, does not
provide built-in functionality for calculating code complexity
metrics.

When users upload or input their code into the system, the
backend forwards the code to the custom Java API for analysis.
The API runs the necessary algorithms to compute the required
complexity metrics and returns results like time complexity,
error messages, and other performance metrics. This integration
ensures precise calculations, which are critical for both real-time
collaboration and individual analysis workflows.

The Java API is built using Java Spring Boot and offers high
performance and flexibility. It can handle multiple programming
languages while maintaining accuracy in complexity
calculations. The key metrics calculated by the API include:

• Lines of Code (LOC): This metric counts the total lines
in the code, focusing on executable statements and
omitting comments and white spaces.

• Halstead Metrics: These metrics help analyze the
overall complexity and effort required for
understanding and maintaining the code.

• Nesting Depth: This metric evaluates the depth of loops
or conditional statements, which can indicate higher
complexity when deep nesting is present.

• Maintainability Index: This index is calculated based
on several factors, including the above metrics, to
assess the overall maintainability of the code.

By integrating this custom Java API, the system offers
accurate and efficient complexity analysis that goes beyond
simple code execution, providing developers with actionable
insights to improve code quality and maintainability.

5) Version Control and Automatic Updates
The system integrates with Git to track code changes and

calculate complexity metrics based on the latest version of the
codebase. Whenever new changes are pushed or committed to
the repository, the system triggers a re-calculation of key metrics
like Lines of Code (LOC), Cyclomatic Complexity, and
Maintainability Index. This ensures that the metrics stay up-to-
date with the evolving codebase, and users can view these
changes directly from their dashboards.

The backend monitors the repository for changes and
automatically recalculates the code complexity metrics. Users
can access reports that show how the code's complexity evolves
over time, which is useful for project management and planning.

The integration of various technologies such as Socket.io for
real-time collaboration, File-Saver for easy downloading of

source code files, the Piston API for executing code across
multiple programming languages, and CodeMirror for an
interactive code editor collectively forms a robust and efficient
system for measuring and analyzing code complexity. This
synergy not only enhances user experience but also fosters a
collaborative environment where developers can work together
seamlessly, regardless of their physical locations.

Socket.io enables instantaneous communication between
users, allowing them to see each other’s changes in real time,
discuss code issues, and provide feedback on complexity metrics
as they are being analyzed. This feature significantly accelerates
the review process and minimizes the chances of
miscommunication that often arise in traditional code review
settings.

File-Saver facilitates the easy export and downloading of
files, empowering users to preserve their edited code and
analysis results locally. This functionality ensures that
developers can maintain a clear version history and access their
work without dependency on continuous internet connectivity.
Being able to save and manage files directly enhances
productivity and encourages users to experiment and iterate
without fear of losing their changes.

Meanwhile, the Piston API allows for dynamic code
execution, enabling the application to run code snippets in
various programming languages. This capability provides
immediate feedback on code behavior, which is essential for
assessing performance and identifying potential complexity-
related issues. By integrating execution results with complexity
metrics, developers gain a holistic view of their code’s quality
and maintainability.

The inclusion of CodeMirror as the primary code editor
enriches the user interface with features like syntax highlighting,
code folding, and autocompletion. This interactivity not only
makes coding more efficient but also encourages best practices
by helping users adhere to coding standards through visual cues.

Furthermore, the system’s integration with version control
systems like Git ensures that code metrics are continuously
updated in alignment with the codebase's evolution. This
dynamic updating allows teams to track changes effectively,
making informed decisions throughout the software
development lifecycle. By linking complexity metrics to
specific code versions, the system helps identify how changes
affect code quality over time.

In summary, this combination of advanced technologies
creates a seamless and efficient environment for developers. The
application supports continuous improvement in code quality
through real-time collaboration, easy file management, dynamic
execution feedback, and an interactive coding experience,
ultimately leading to better maintainability and reduced
technical debt.

Overall system functionalities of the CCMM are illustrated
in Figure 2.

Figure 2. Higher Level View Of CCMM

IV. RESULTS

We successfully managed to implement CCMM. Not only it
provides a basis for project code analysis, but also provides very
user friendly and easy navigate interface to satisfy its users.
Some of the functionalities that help users, performed by
CCMM are demonstrated below. It provides an easy navigate
buttons, easy access text area to paste your code, user friendly
view of provided code and very clear results in every page of
CCMM.

Figure 3. Navigation

In addition to its intuitive navigation and user-friendly
interface, the Code Complexity Measuring Machine (CCMM)
ensures that the complexity metrics are clearly defined in a way
that users of all levels can easily understand. Each metric, such
as Lines of Code (LOC), Nested Loop Depth, Halstead
Complexity Metrics, and Maintainability Index, is accompanied
by concise explanations, allowing users to interpret the results
effectively. To enhance clarity further, CCMM uses a color-
coded system where different colors represent various levels of
code quality and complexity. Green indicate well-optimized
code, while red highlights sections requiring attention. This
visual distinction helps users quickly assess their code’s status
without delving deep into the numbers. The results are displayed
with exceptional clarity, using well-organized text-based
summaries, ensuring that users can effortlessly access and
understand the analysis outcomes across every page of the
application.

Figure 4. Code Maintainability Checker

Figure 5. Halstead Metric Calculator

The UI for the collaborative application features a sidebar

for navigation on the left, providing easy access to the project’s
file directory and other essential sections. The live file directory
within this sidebar allows users to see real-time updates, with
indicators like timestamps or dots next to files being actively
worked on. Users' avatars are shown next to the files they are
editing, offering a clear view of who is working on what. This
intuitive sidebar navigation simplifies project management and
file access during collaboration.

Integrated directly into the workspace, the chat window in
the bottom-right allows for real-time communication,
supporting both text and code snippets. This makes it easy for
team members to discuss and share code without leaving the
coding environment. Alongside the chat, a code execution panel
enables users to run code in real-time, displaying outputs, errors,

and logs in a terminal-like view, helping teams receive instant
feedback on code functionality.

Within the main code editor, the UI supports multiple user
interactions with each user’s cursor and selections color-coded
and labeled with their names. Real-time editing occurs
seamlessly, with all collaborators seeing changes immediately
as they happen. Additionally, a real-time metrics panel
dynamically updates important coding metrics such as
cyclomatic complexity and lines of code as the code evolves.
These live metrics ensure that the entire team can monitor the
quality and complexity of the project as they work together.
Overall, the application offers a smooth, real-time collaborative
experience with a sidebar-driven navigation for enhanced
usability.

Figure 6. Shared Environment: Files

Figure 7. Real time Complexity Measurements

Figure 8. Code Execution

Figure 9. Chat and Realtime Collaborative Coding

These features work together to create a highly interactive
and collaborative coding experience, allowing developers to
streamline their workflow and focus on enhancing code quality.
The integration of real-time collaboration with team members to
work simultaneously on the same codebase, sharing insights,
adding comments, and discussing issues without any delays.
This real-time interaction ensures that feedback is immediate,
fostering an environment where problems can be resolved
quickly, and ideas can be shared openly. As a result, the
collaborative process becomes more efficient, reducing the time
spent on traditional code reviews and facilitating a smoother
transition from development to deployment.

V. DISCUSSIONS

The Code Complexity Measuring Machine (CCMM) has
proven to be a powerful tool for assessing and improving the
quality of software projects. By offering comprehensive
complexity metrics like Lines of Code (LOC), Cyclomatic
Complexity, Halstead Metrics, and the Maintainability Index,
CCMM allows developers to gain valuable insights into their
codebase's structural and logical intricacies. These metrics not
only help in identifying potential problem areas but also guide
developers in making informed decisions about refactoring,
optimizing, and maintaining their code. With this detailed
understanding of the code's complexity, developers can better
manage technical debt and improve the overall stability and
performance of their software.

One of the key strengths of CCMM is its focus on user
experience. The design of a user-friendly interface with easy-to-
navigate buttons and text areas simplifies the process of code
input and analysis. Users can quickly paste their code, initiate
analysis, and view results without needing extensive training or
technical expertise. This ease of use significantly lowers the
barrier to entry, making the tool accessible to both novice
programmers and experienced developers. The integration of
color-coded metrics further enhances user comprehension,
allowing for quick visual identification of code areas that require
optimization. For example, colors like green, yellow, and red
signify different states of code quality, from well-optimized to
high complexity or potential error-prone areas, making it easier
for developers to focus on sections that need immediate
attention.

The inclusion of real-time collaboration features, enabled by
Socket.io, adds significant value to the system, transforming

CCMM from a static analysis tool into a dynamic, interactive
platform. This feature supports multiple users working together
on the same project, making it an ideal choice for teams working
in agile or distributed environments. The ability to see changes
and comments in real-time not only speeds up the review
process but also ensures that complexity-related issues are
addressed collaboratively, fostering a culture of continuous
improvement. This aspect of CCMM aligns well with modern
development practices where collaboration and communication
are critical to the success of software projects. It enables
developers to conduct live discussions and peer reviews directly
within the tool, leading to quicker identification of issues and
faster resolution.

Furthermore, the custom-built Java API used in CCMM
provides precise calculations for key metrics like Nesting Depth,
Maintainability Index, and Halstead Metrics, making it possible
to analyze various dimensions of code complexity with a high
degree of accuracy. This feature is especially important when
dealing with large codebases where even small inefficiencies
can lead to significant performance issues. By using a tailored
solution that focuses on these detailed metrics, CCMM provides
a more specialized and in-depth analysis compared to
generalized tools. This helps teams not only to maintain high
code quality but also to plan future development phases more
effectively by identifying complex modules that might require
extra testing or refactoring.

Despite its many strengths, there are some areas where
CCMM could be further enhanced. For example, while the
Piston API allows for code execution across multiple languages,
its role in complexity analysis could be expanded to include
more detailed performance metrics like execution time profiling
and memory usage statistics. Such features would allow
developers to see not only how complex their code is but also
how it performs in real-time, providing a more holistic view of
code efficiency. Additionally, the integration of more advanced
visualizations, such as heatmaps for code hotspots or interactive
dependency graphs, could offer deeper insights into complex
codebases. Such enhancements could help developers better
understand the relationships between different parts of the code,
leading to more effective optimizations. This would be
particularly beneficial for teams working on large-scale systems
where understanding module interactions is critical to
maintaining stability.

Another potential improvement could involve expanding the
scope of CCMM's collaborative features. Adding capabilities
such as a history of changes or version comparison directly
within the tool could further aid in tracking progress over time.
These features would enable users to see how their code's
complexity has evolved throughout the project lifecycle,
allowing for retrospective analysis and better understanding of
the impact of refactoring efforts. This could also be beneficial in
educational settings, where instructors could use CCMM to
track the progress of students as they learn to write more
efficient and maintainable code.

Overall, the implementation of CCMM has achieved its
primary goals, providing a robust framework for code analysis
while maintaining a focus on user satisfaction. The combination
of precise complexity metrics, intuitive design, and real-time

collaborative capabilities makes CCMM a valuable asset for
development teams aiming to improve code quality and
maintainability. As the complexity of software projects
continues to grow, tools like CCMM will play a crucial role in
helping teams manage technical debt, optimize performance,
and ensure long-term project success. Additionally, with further
improvements, CCMM could become a benchmark tool for not
only development teams but also educational institutions,
helping to build a foundation of best practices in coding,
collaboration, and complexity management.

VI. CONCLUSION

The Code Complexity Measuring Machine (CCMM)
application provides a comprehensive solution for analyzing,
evaluating, and managing the complexity of software code,
making it an essential tool for modern software development.
By integrating multiple complexity metrics such as Lines of
Code (LOC), Cyclomatic Complexity, Halstead Metrics,
Nesting Depth, and the Maintainability Index, the system
empowers developers to gain a thorough understanding of the
quality and maintainability of their codebase. These metrics
offer insights into different aspects of the code, from the density
and intricacy of logic to the ease with which code can be
understood, tested, and modified. This holistic approach helps
developers address both immediate code issues and long-term
maintainability, facilitating higher code quality throughout the
development lifecycle.

The application goes beyond traditional static code analysis
by offering real-time collaboration features and dynamic file
handling, which are crucial for software development teams
operating in distributed or agile environments. The ability to
collaboratively review and refine code in real-time helps teams
catch potential issues early, reducing the need for extensive
reworks later in the development process. With React as the
front-end framework, the application offers a responsive and
user-friendly interface, enabling developers to interact
seamlessly with the system. Socket.io ensures that changes are
propagated instantly among team members, keeping everyone in
sync, while CodeMirror provides an interactive coding
experience with syntax highlighting and other helpful features
for editing code.

The system's backend, powered by a custom Java API built
with Spring Boot, is designed to fill the gaps left by existing
code execution tools like the Piston API. While the Piston API
facilitates multi-language code execution, it lacks native support
for complexity metric analysis. The custom API addresses this
by providing robust and precise calculations for critical metrics,
such as LOC, Halstead Metrics, and maintainability indices. By
offering these detailed outputs, the application allows
developers to assess the complexity of their codebase from
multiple perspectives, enabling them to identify bottlenecks,
understand how different parts of the code interact, and make
informed decisions regarding optimization and refactoring. This
deeper level of analysis supports teams in producing code that is
not only functional but also maintainable and scalable.

A major strength of CCMM lies in its real-time collaboration
capabilities, which significantly enhance team productivity. The

Socket.io integration allows multiple users to simultaneously
edit, comment on, and review code, enabling teams to discuss
potential complexity issues as they emerge. This level of
interactivity is particularly valuable in scenarios where quick
feedback is needed, such as during code reviews or pair
programming sessions. The CodeMirror editor complements
this by providing a familiar coding environment that supports
multiple programming languages, making it easier for team
members to navigate and modify code. By catching issues early
through collaborative review, CCMM helps teams maintain a
steady pace without compromising code quality.

File-Saver plays a crucial role in file management, enabling
users to save and export their code files directly from the
browser. This feature allows developers to keep a local copy of
their progress, preserving changes and enabling easy rollbacks
if needed. This ability to manage source code files efficiently
ensures that developers can maintain an organized workflow,
even when handling complex projects with multiple files.
Additionally, the integration of File-Saver facilitates seamless
interaction with source files during collaborative sessions,
allowing users to export their work in a consistent format,
ensuring compatibility with other tools and platforms used by
the team.

The application’s custom Java API further enhances the
workflow by performing real-time calculations of complexity
metrics, such as Nesting Depth, which measures the depth of
nested loops and conditionals, and Halstead Metrics, which
analyze the complexity of operations and operands. By
providing immediate feedback on how these metrics change as
code is edited, CCMM enables a continuous improvement
process. Developers can see the direct impact of their refactoring
efforts, making it easier to achieve the desired balance between
performance and maintainability. This continuous feedback
loop encourages a culture of ongoing refinement and adherence
to best coding practices, ensuring that the codebase remains
maintainable and efficient as it evolves.

Beyond individual projects, CCMM also serves as a valuable
tool for larger teams and organizations. Its ability to integrate
with version control systems like Git means that complexity
metrics can be updated automatically as code changes are
committed, allowing teams to monitor the quality of their
codebase over time. This feature is especially useful for tracking
the effectiveness of refactoring efforts or assessing the impact of
new features on the overall complexity of the project. By linking
complexity data directly to version control, CCMM provides
teams with a historical view of their codebase's evolution,
enabling data-driven decision-making and better long-term
planning.

In summary, the Code Complexity Measuring Machine
(CCMM) is a fully-featured platform that not only aids
developers in analyzing their code but also fosters a
collaborative and continuous improvement environment. Its
ability to provide precise complexity metric calculations,
combined with real-time collaboration and robust file
management, addresses the growing needs of modern
development teams. CCMM supports efficient, high-quality
code production, reducing technical debt, improving
maintainability, and ensuring long-term software quality. As

software systems continue to increase in size and complexity,
tools like CCMM are indispensable for maintaining the balance
between innovation and stability, making it an invaluable asset
for any development project.

VII. REFERENCES

[1] T. J. McCabe, "A Complexity Measure," IEEE

Transactions on Software Engineering, Vols. SE-2, no.

4, pp. 308-320, Dec. 1976.

[2] P. Oman and J. Hagemeister, "Metrics for assessing a

software system’s maintainability," Proc. of

International Conf. on Software Maintenance, pp. 337-

344, 1992.

[3] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The

Design and Analysis of Computer Algorithms,

Addison-Wesley, 1974.

[4] N. Fenton and S. L. Pfleeger, A Rigorous and Practical

Approach, PWS Publishing Co., 1998.

[5] S. Weis and D. Lenk, "Collaborative real-time editing

of web applications," Proc. of ACM Symposium on

User Interface Software and Technology (UIST), pp.

205-212, 2011.

[6] M. H. Halstead, "Elements of Software Science,"

Operating and Programming Systems Series, vol. 7,

1977.

[7] D. Kafura and S. Henry, "Software Structure Metrics

Based on Information Flow," IEEE Transactions on

Software Engineering, Vols. SE-7, no. 5, pp. 510-518,

Sept. 1981.

[8] S. H. Kan, Metrics and Models in Software Quality

Engineering, 2nd ed., Boston, MA: Addison-Wesley,

2002.

[9] M. H. Halstead, Elements of Software Science, New

York, NY: Elsevier, 1977.

[10] Mikejo5000, “Code metrics - Maintainability index

range and meaning - Visual Studio (Windows),”

learn.microsoft.com. https://learn.microsoft.com/en-

us/visualstudio/code-quality/code-metrics-

maintainability-index-range-and-meaning?view=vs-

2022, learn.microsoft.com..

[11] "What is Cyclomatic Complexity? Definition Guide &

Examples," www.sonarsource.com.

https://www.sonarsource.com/learn/cyclomatic-

complexity/.

[12] "Verifysoft → Halstead Metrics," Verifysoft.com, 2024.

https://www.verifysoft.com/en_halstead_metrics#:~:text

=Halstead (accessed Sep. 17, 2024.

[13] N. Weibel, A. Fouse, S. Emmenegger, and E. Hutchins,

"Let's Get Physical: Spatialized Interaction in a Paper-

Digital Collaborative Workspace," Proc. of the ACM

International Conf. on Interactive Tabletops and

Surfaces, p. 95–104, 2011.

[14] M. Storey, F. Figueira Filho, and L.-T. Cheng, "The

Impact of Social Media on Software Development

Practices and Tools," Proc. of the 2014 International

Conf. on Software Engineering, pp. 24-35, 2014.

[15] A. Bacchelli and C. Bird, "Expectations, Outcomes, and

Challenges of Modern Code Review," Proc. of the

International Conf. on Software Engineering (ICSE),

pp. 712-721, 2013.

[16] P. Rigby, D. M. German, and M. Storey, "Open Source

Software Peer Review Practices: A Case Study of the

Apache Server," Proc. of the 30th International Conf.

on Software Engineering (ICSE), pp. 541-550., 2008,.

[17] A. Bosu, M. Greiler, and C. Bird, "Characteristics of

Useful Code Reviews: An Empirical Study at

Microsoft," Proc. of the 12th Working Conf. on Mining

Software Repositories (MSR), pp. 146-156, 2015.

[18] C. F. Kemerer, "Software Complexity and Software

Maintenance: A Survey of Empirical Research," Annals

of Software Engineering, vol. 1, no. 1, pp. 1-22, 1995.

[19] Piston, "Piston API V2 Documentation," [Online].

Available: https://piston.readthedocs.io/en/latest/api-

v2/.

