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Abstract—The "Code Complexity Measuring Machine" 

project aims to develop a comprehensive tool for assessing and 

managing software complexity. This tool integrates multiple 

metrics, including time complexity, cyclomatic complexity, and 

code size analysis, to provide a holistic view of a software system's 

maintainability and performance. By calculating nesting depth, 

cyclomatic complexity, and logical statement density, the tool 

offers insights into potential improvements and helps developers 

visualize complexity issues. Additionally, it features a 

collaborative environment where teams can share dashboards, 

engage in real-time discussions, and conduct collaborative code 

reviews, fostering continuous improvement. This project leverages 

established metrics such as McCabe's cyclomatic complexity [1] 

and maintainability index [2], along with modern collaborative 

features to enhance software development processes. 
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I. INTRODUCTION 

As software systems grow in size and complexity, ensuring 
maintainability and optimizing performance become 
increasingly challenging. Code complexity is a critical factor 
influencing these aspects, as it directly affects the ease of 
understanding, testing, and modifying code. High complexity 
can lead to increased development time, more bugs, and higher 
maintenance costs. Therefore, measuring and managing code 
complexity is essential for maintaining software quality 
throughout its lifecycle. 

The "Code Complexity Measuring Machine" addresses this 
need by offering a comprehensive set of tools to analyze various 
dimensions of code complexity. It focuses on key metrics such 
as time complexity, cyclomatic complexity, and code size, 
which are crucial for evaluating and improving software 
maintainability. Time complexity analysis provides insights into 
how the code's runtime scales with input size, helping 
developers identify and mitigate performance bottlenecks [3]. 
Cyclomatic complexity, a metric introduced by McCabe [1], 
quantifies the number of linearly independent paths through a 
program's source code, offering a measure of its logical 
complexity and testing requirements. 

In addition to these traditional metrics, the project includes a 
detailed code size analysis, which counts logical statements and 
calculates the ratio of source lines of code (SLOC) to lines of 
code (LOC). This helps developers understand the density and 
structure of the code, further informing maintenance strategies 
[4]. The maintainability index, as described by Oman and 

Hagemeister [2], is also calculated, providing a single composite 
score that reflects the overall maintainability of the codebase. 

Recognizing the importance of collaboration in software 
development, the project integrates features that support real-
time collaboration and code review. Shared dashboards allow 
team members to monitor key complexity metrics collectively, 
while real-time collaboration tools enable simultaneous 
discussions and annotations, similar to platforms like Google 
Docs [5]. These features promote continuous feedback and 
improvement, ensuring that complexity is managed effectively 
throughout the development process. 

By combining these analytical tools with collaborative 
features, the "Code Complexity Measuring Machine" aims to 
enhance the quality and maintainability of software systems, 
making it easier for development teams to produce robust, 
efficient, and maintainable code. 

II. LITERATURE REVIEW 

Code complexity has long been recognized as a significant 
factor influencing software quality, maintainability, and 
reliability. The concept of code complexity encompasses 
various dimensions, such as cyclomatic complexity, time 
complexity, and code size, each contributing to the overall 
understanding of how difficult it is to understand, test, and 
modify a software system. 

Introduced by McCabe in 1976, cyclomatic complexity is 
one of the most widely used metrics for measuring the 
complexity of a program’s control flow. It calculates the number 
of linearly independent paths through a program’s source code, 
which correlates with the number of test cases needed to achieve 
full branch coverage [1]. High cyclomatic complexity indicates 
a more intricate and potentially error-prone codebase, as it 
suggests numerous decision points and complex logic paths. 
This metric is essential for identifying overly complex modules 
that may benefit from refactoring to improve maintainability. 

Time complexity is a fundamental concept in algorithm 
analysis, often linked to the performance and efficiency of 
software systems. Defined as the relationship between the size 
of the input and the time required to execute an algorithm, time 
complexity is crucial for predicting how software will scale as 
data volumes grow. According to Aho, Hopcroft, and Ullman 
[3], optimizing time complexity is vital for ensuring that 
software remains responsive and efficient under varying loads. 
Tools that measure time complexity help developers understand 
potential bottlenecks and optimize code for better performance. 
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Halstead Metrics, introduced by Maurice Halstead in his 
seminal 1977 work Elements of Software Science [6], 
revolutionized the way code complexity was understood by 
providing a mathematical model based on operators and 
operands within a software program. Halstead’s key 
contribution was the notion that software complexity could be 
quantified by analysing the basic operations and symbols used 
in the code, rather than relying solely on structural or 
algorithmic analysis. Halstead’s metrics are based on simple 
counts of the number of unique and total operators and operands. 
From these values, five derived measures are calculated, 
including program length, volume, vocabulary, difficulty and 
effort. These metrics aim to predict the cognitive effort required 
for understanding and maintaining a software program. 

Loops are one of the most computationally intensive 
constructs in programming, and nested loops can exponentially 
increase time complexity. The Nested Loop Matrix method 
analyses the depth and arrangement of nested loops within a 
program to evaluate the structural complexity. Deeply nested 
loops often lead to higher time complexity, increasing the 
computational cost and runtime of the software. The analysis of 
loop structures is particularly important in performance-critical 
applications where time complexity plays a significant role. 
Aho, Hopcroft, and Ullman [4] emphasize that deeply nested 
loops should be minimized for more efficient algorithm design. 
Tools that analyse loop structures help identify performance 
bottlenecks and suggest optimization strategies, such as 
refactoring loops or applying algorithmic improvements. 

Lines of Code (LOC) has been a widely used metric in 
software engineering for measuring the size of a codebase. 
Despite its simplicity, LOC has proven useful in predicting 
development and maintenance costs. According to Kafura and 
Henry (1981), LOC can serve as a significant factor for 
estimating software project costs, particularly in large-scale 
systems where understanding code size can influence resource 
allocation throughout the project lifecycle. In their work, they 
argue that LOC, when combined with other metrics such as 
information flow, can provide deeper insights into software 
structure and the complexity of interactions within the codebase 
[7]. 

Kan (2002) highlights the continued reliance on LOC as an 
industry-standard measure of productivity, despite its well-
documented limitations. While LOC may not accurately reflect 
the quality or complexity of code in every case, it remains a 
valuable indicator in many environments due to its simplicity 
and ease of use. Kan suggests that, when combined with other 
metrics like cyclomatic complexity or maintainability indices, 
LOC can be a practical tool for managing software quality and 
predicting long-term maintenance needs [8]. 

Halstead (1977) supports the notion that LOC is most 
effective when used in conjunction with other structural metrics. 
His research emphasizes that LOC alone may not capture the full 
complexity of a system but can provide valuable context when 
analyzing code characteristics like operational and data 
complexity. Halstead’s formulae, which include considerations 
such as the number of operators and operands, underscore the 
need to pair LOC with other complexity measures to gain a 
comprehensive view of code behavior and maintainability [9]. 

In summary, while LOC may have limitations in isolation, 
the evidence from multiple sources suggests that it remains a 
critical metric when combined with other measures, especially 
for studying the structural and functional characteristics of 
software systems. 

The size of the code, often measured in Source Lines of Code 
(SLOC) or Logical Lines of Code (LLOC), also plays a 
significant role in assessing complexity. While larger codebases 
are not inherently more complex, they often present challenges 
related to maintainability, as noted by Fenton and Pfleeger . The 
maintainability index, developed by Oman and Hagemeister, 
integrates code size with other factors like cyclomatic 
complexity and Halstead metrics to provide a composite score 
reflecting how easy the code is to maintain [2]. A lower 
maintainability index suggests that the code might require 
significant effort to update or debug, highlighting the need for 
ongoing code reviews and refactoring. 

The Maintainability Index (MI) is a composite metric 
designed to provide a single, overall indicator of code 
maintainability. It was introduced as part of software quality 
evaluation frameworks and is calculated using a combination of 
Cyclomatic Complexity, Halstead Volume, and lines of code. 
Higher MI values indicate better maintainability, while lower 
values signal that the code may be difficult to modify or extend. 
According to Microsoft's documentation, MI values range from 
0 to 100, with thresholds typically set to highlight critical areas 
requiring refactoring [10]. This metric plays a crucial role in 
maintainability analysis, particularly in large software projects, 
where long-term maintenance is a major concern. 

Introduced by McCabe in 1976, Cyclomatic Complexity 
measures the number of independent paths through a program's 
source code. It quantifies the decision logic, which correlates 
with the difficulty of testing and maintaining the software. 
Cyclomatic Complexity is computed from the control flow 
graph of a program, where nodes represent blocks of code and 
edges represent control flow between them. Higher values of 
Cyclomatic Complexity suggest that a program is more complex 
and error-prone, requiring greater effort to test and maintain 
[11]. It is one of the most widely used metrics in modern static 
code analysis tools, reflecting its importance in software 
engineering practices. 

The Halstead Metrics were proposed by Maurice Halstead in 
the 1970s to measure the cognitive complexity of software. 
Halstead Volume, one of the key metrics, is derived from the 
number of operators and operands in the code. This metric is 
particularly useful in estimating the mental effort required to 
understand a given piece of software. Halstead's theory suggests 
that larger volumes indicate higher complexity, which can 
negatively affect maintainability, readability, and the potential 
for defects [12]. The Halstead Metrics provide a more nuanced 
view of software complexity by examining the fundamental 
operations in the code rather than just structural elements. 

Various tools have been developed to integrate these metrics 
into automated software quality checks. By using these metrics 
in tandem, modern complexity analysis tools provide developers 
with actionable insights into code maintainability, readability, 
and testability. These tools often highlight areas of concern and 
suggest improvements, helping developers manage technical 



 

 

debt and ensure code quality throughout the software 
development lifecycle. 

Collaborative code review is a vital process in modern 
software development, enabling teams to work together to 
identify issues, ensure code quality, and improve overall 
maintainability. In the context of the "Code Complexity 
Measuring Machine," collaborative code review goes beyond 
traditional review mechanisms by integrating complexity 
analysis into the review process itself. This ensures that team 
members can simultaneously address both functional 
correctness and complexity-related concerns, ultimately 
enhancing software robustness and performance. 

The collaborative environment is built around shared 
dashboards that display key complexity metrics in real time. 
These dashboards provide a unified view of the project’s status, 
allowing developers to monitor complexity across different 
dimensions, such as cyclomatic complexity, time complexity, 
and code size. Each developer can view the current state of the 
codebase and compare it with previous versions, enabling them 
to track the impact of their changes on code complexity. 
According to Weibel et al. [13], dashboards in collaborative 
systems can significantly improve transparency and team 
coordination, ensuring that all members are aligned on project 
goals and complexity standards. 

Real-time collaboration features allow team members to 
simultaneously view and discuss complexity analysis results, 
similar to collaborative platforms like Google Docs. Multiple 
users can interact with the same set of code and metrics, 
facilitating immediate feedback and group decision-making. 
Real-time collaboration has been shown to enhance the speed 
and effectiveness of code review processes, as discussed by 
Storey et al. [14], by enabling multiple reviewers to contribute 
simultaneously and resolve issues more efficiently. 

Users can add comments and annotations directly to the 
complexity analysis results, allowing for in-depth discussions 
about specific code issues. These comments are tied to particular 
sections of the code or metrics, ensuring that the context is 
preserved for future reference. This feature supports 
asynchronous collaboration, where developers can leave 
feedback for others to review at their convenience. As noted by 
Bacchelli and Bird [15], comments in code review are essential 
for providing constructive feedback and promoting 
understanding among team members. 

The system maintains a history of discussions and decisions 
related to complexity issues, enabling the team to track the 
evolution of the codebase over time. This historical record 
serves as a valuable resource for understanding past decisions, 
the rationale behind certain design choices, and how complexity 
concerns were addressed. Maintaining this history has been 
shown to be particularly beneficial in large and distributed 
teams, as it helps avoid repeated discussions and 
misunderstandings, as highlighted by Rigby et al. [16]. 

Feedback loops are integrated into the collaborative 
environment, allowing developers to provide input on 
complexity findings and suggest improvements. These loops 
facilitate continuous feedback, where suggestions from team 
members are incorporated into future development cycles, 

promoting a culture of constant refinement. This approach aligns 
with the findings of Bosu et al. [17], who emphasize the 
importance of ongoing feedback in improving both code quality 
and team collaboration. 

In traditional code reviews, the focus is often on 
functionality, style, and adherence to coding standards. 
However, in this project, code reviews are explicitly focused on 
addressing complexity metrics. This ensures that code 
maintainability and performance are prioritized from the outset, 
reducing technical debt over time. Developers can collectively 
analyze the complexity metrics presented on the shared 
dashboard and discuss strategies for reducing cyclomatic 
complexity, optimizing algorithms, or refactoring large code 
segments. This complexity-driven review process has been 
shown to significantly improve long-term maintainability, as 
documented by Kemerer [18]. 

 
In recent years, the importance of collaborative tools in 

managing code complexity has gained attention. Weis and Lenk 
[18] discuss the benefits of real-time collaborative editing, 
which allows multiple developers to work on the same codebase 
simultaneously. This approach not only facilitates immediate 
feedback but also enables collective decision-making regarding 
code structure and complexity. Collaborative code reviews, 
supported by shared dashboards and annotations, further 
enhance the ability to manage complexity by ensuring that all 
team members are aligned on coding standards and best 
practices. 

Together, these metrics and collaborative tools form the 
foundation of the "Code Complexity Measuring Machine." By 
integrating cyclomatic complexity, time complexity, and code 
size analysis with real-time collaboration features, this project 
builds upon existing literature to create a comprehensive 
solution for managing software complexity. The goal is to 
provide actionable insights that help developers maintain high-
quality codebases, reduce technical debt, and improve the 
overall efficiency of the software development process. 

III. METHODOLOGY 

A. System Overview 

The "Code Complexity Measuring Machine" is a software 
system designed to assess and manage code complexity through 
a range of metrics and real-time collaboration features. The 
system is divided into several key modules that calculate metrics 
like Lines of Code (LOC), Cyclomatic Complexity, and Logical 
Lines of Code (LLOC). It provides a user-friendly interface 
where developers can actively collaborate on reviewing and 
improving code quality. 



 

 

 

Figure 1. Software Quality Metrics 

The interface features a dashboard that visualizes various 
code metrics through charts and graphs, allowing users to track 
the complexity of their code in real time. These visualizations 
help identify areas of high complexity that may require 
refactoring. Developers can also interact with a live code editor 
with integrated syntax highlighting, where multiple users can 
work on the same piece of code simultaneously. Each user is 
represented by a unique colored cursor, promoting seamless 
collaboration. 

A comments section allows users to annotate the code with 
feedback and suggestions, supporting asynchronous reviews and 
team discussions. The system also provides options for 
downloading complexity reports and reviewed code using built-
in tools. 

The real-time collaboration and visualization features ensure 
that the code complexity analysis process is efficient, 
transparent, and collaborative. 

 

B. Data Collection and Parsing 

The first step involves collecting source code from the 
project repository and parsing it using abstract syntax trees 
(AST). The ASTs are used to extract relevant information for 
each complexity metric, including control flow constructs, 
algorithmic structures, and code size. 

 

C. Integrated Complexity Metrics Calculation 

After parsing, the framework calculates the cyclomatic 
complexity, time complexity, and code size in a single pass. 
Cyclomatic complexity is determined by constructing control 
flow graphs (CFGs), while time complexity is estimated by 
analyzing nested loops and recursive functions. Code size 
metrics, including LOC and LLOC, are computed 
simultaneously, and the maintainability index is derived using 
these metrics. 

1) LOC Complexity Calculation 
To calculate LOC Complexity in the "Code Complexity 

Measuring Machine," the methodology focuses on determining 
Source Lines of Code (SLOC) and Logical Lines of Code 

(LLOC) as key metrics for assessing code size and complexity. 
lang-map will be utilized to detect the programming language of 
the code, ensuring language-specific parsing rules are applied 
for accurate LOC calculations. 

SLOC will be computed by counting all lines of executable 
code, while excluding non-functional elements such as 
comments and blank lines. LLOC, on the other hand, will focus 
on meaningful statements like control structures, function calls, 
and expressions that directly affect the program’s behavior. The 
system will achieve this by parsing the source code into an 
abstract syntax tree (AST), allowing it to analyze the logical 
flow and count significant code elements. 

The results will be presented through a real-time interface 
using React and the CodeMirror editor, which will dynamically 
update the LOC metrics as the user edits the code. Additionally, 
users can export the LOC data using file-saver and jszip, 
allowing for easy download and offline review. This 
methodology ensures that both raw code volume and logical 
code complexity are accurately measured and visualized. 

2) Halstead Metrics Calculation 
The Halstead Metrics are calculated based on the operators 

and operands identified during the parsing stage. Operators 
include arithmetic symbols, logical operators and comparison 
operators. Operands include variables, constants, and function 
names. 

First, the count of operators and operands are taken from the 
algorithm. Distinct operators n1 is taken by counting the number 
of unique operators and distinct operands n2 is taken by 
counting the number of unique operands in the algorithm. The 
total operators N1 and total operands N2 are taken by counting 
the total number of operators and operands in the algorithm. 

Once the operators and operands are counted, five key 
metrics are derived. Program length N, volume V, vocabulary n, 
difficulty D and effort E are calculated. The relevant equations 
to the five key metrics are given below. 

 

                                  N = N1 + N2                       (1) 

 

Equation (1) represents the total number of elements, 
operators and operands in the code (N derives program length).  

 

                                  n = n1 + n2                       (2) 

 

Equation (2) represent the total number of unique elements 
in the code (n derives program vocabulary). 

 

                                  V = N ⋅ log2(n)                       (3) 

 

Equation (3) represent program Volume (V) reflects the size 
of the codebase in terms of its information content. 



 

 

 

                                  D = n1 ⋅  N2                       (4) 

                                           2     n2 

 

Equation (4) represent program Difficulty(D) measures the 
complexity of combining operators and operands. 

 

                                  E = D ⋅ V                                      (5) 

 

Equation (5) represent program Effort (E) estimates the 
amount of mental effort required to understand and maintain the 
code. 

The derived metrics offer insight into various aspects of the 
software’s cognitive complexity: 

• High Volume (V): A large program volume often 
correlates with higher complexity, indicating a dense or verbose 
codebase that could require significant effort to maintain. 

• High Difficulty (D): A high difficulty value points to 
intricate logic, with complex interactions between operators and 
operands. This suggests that understanding the program may 
require advanced knowledge or experience. 

• High Effort (E): A high effort score implies that the 
code is cognitively demanding, requiring more time and 
resources to fully comprehend or modify. 

3) Nested Loop Matrix Calculation 
In this stage, the focus is on evaluating the structural 

complexity of the code by analysing loop nesting. Loops, 
especially nested loops, can significantly impact the 
performance of a program, increasing its time complexity. 
Nested Loop Matrix calculation is calculated by following steps:  

• A Nested Loop Matrix is created, which represents the 
relationship between loops and their nesting depths. 

• The matrix rows correspond to the nesting levels (e.g., 
single loop, double loop), while the columns correspond to the 
number of occurrences at each level of nesting. 

4) Maintainability Index Calculation 
The function evaluates code complexity using three well-

established software metrics: Maintainability Index, Cyclomatic 
Complexity, and Halstead Volume. These metrics are chosen for 
their effectiveness in assessing various aspects of code 
maintainability and complexity. 

a) Maintainability Index (MI):  

The Maintainability Index is used to assess the ease with 
which code can be maintained, improved, and extended over 
time. It is calculated based on Cyclomatic Complexity, Halstead 
Volume, and the total number of lines of code. The index 
provides a value in the range of 0 to 100, where higher values 
correspond to better maintainability. 

The metric originally was calculated as follows [10]:  
 

𝑀𝐼 =  171 −  5.2 × 𝑙𝑛(𝑉𝑉𝑉) −  0.23 × 𝐶𝐶𝐶 −  16.2 ×
𝑙𝑛(𝐿𝑂𝐶)  

 
Where: 

• VVV = Halstead Volume 

• CCC = Cyclomatic Complexity 

• LOC = Lines of Code  

 

The Maintainability Index is classified as follows: 

• 0–9 (Red): Low maintainability (high complexity, 
requires immediate attention). 

• 10–19 (Yellow): Moderate maintainability (code 
requires improvement). 

• 20–100 (Green): High maintainability (code is 
easily maintainable). 

Cyclomatic Complexity (CC): Cyclomatic Complexity 
measures the number of independent paths through a program. 
It is calculated by constructing the control flow graph of the 
program and determining the number of linearly independent 
paths. High Cyclomatic Complexity indicates a program that is 
harder to understand and test. The target is to minimize this 
value to reduce the risk of errors and enhance maintainability 
[11]. 

Halstead Volume (HV): Halstead Volume measures the 
cognitive complexity required to understand a program by 
quantifying the number of operations and operands. It reflects 
the information density of the code. Higher Halstead Volume 
indicates that more mental effort is needed to comprehend the 
code [12]. 

The system follows a client-server architecture. The user 
interface (UI) is developed using React, which provides an 
interactive environment for users to submit their code and view 
the complexity results. The backend, implemented in Java, 
processes the submitted code and computes the Maintainability 
Index, Cyclomatic Complexity, and Halstead Volume. 

1. Input Submission: The user enters the code into a text 
area in the front-end, which is then sent to the backend 
via an HTTP POST request using Axios. The backend 
is hosted on a local server, and the endpoint /calculate-
maintainability-index is responsible for handling the 
complexity calculation request. 

2. Response Handling: Upon receiving the request, the 
backend calculates the Maintainability Index, 
Cyclomatic Complexity, and Halstead Volume. These 
values are returned as an array to the front-end, where 
they are displayed dynamically. The UI changes color 
based on the Maintainability Index values, providing 
an intuitive, real-time assessment of code quality: 

• Red: Indicates critical maintainability issues (MI 
0–9). 



 

 

• Yellow: Signals moderate maintainability issues 
(MI 10–19). 

• Green: Denotes good maintainability (MI 20–
100). 

5) Error Handling and User Feedback 
To ensure robustness, the front-end incorporates error 

handling mechanisms. If the complexity check fails (e.g., due to 
invalid input or server error), an error message is displayed, 
prompting the user to verify the input code. The user can also 
clear the input and results via the "Clear" button to reset the tool 
for another analysis. 

6) Dynamic Feedback Using Code Visualization 
The tool uses the Count Up library to present real-time, 

animated results for the Maintainability Index, Cyclomatic 
Complexity, and Lines of Code. The results are displayed 
dynamically on the UI, providing immediate feedback to users 
and improving the user experience. Code syntax is highlighted 
using Prism, which enhances readability and clarity.w 

D. Visualization and Reporting 

The results are visualized through a unified dashboard that 
displays complexity metrics in real-time. Developers can 
interact with the dashboard to drill down into specific modules 
or functions, view historical trends, and compare complexity 
metrics across different code versions. 

E. Real-Time Collaboration and Feedback 

The framework supports real-time collaboration by allowing 
multiple team members to access the dashboard simultaneously. 
Developers can provide feedback directly within the system, 
highlighting specific complexity issues or suggesting 
improvements. The system maintains a history of feedback and 
actions taken, enabling continuous monitoring and refinement 
of the code. 

The collaborative code review feature of the "Code 
Complexity Measuring Machine" will be implemented using 
React and Socket.io to enable real-time interaction between 
multiple users. Socket.io will handle WebSocket connections, 
allowing for instant communication between the server and 
clients. This enables users to view changes made by others in 
real time, facilitating collaborative discussions and live code 
editing. Each user’s actions, such as typing, commenting, or 
viewing different parts of the code, will be synchronized across 
all participants, ensuring seamless collaboration during code 
reviews. 

To provide an efficient and intuitive environment for code 
editing, CodeMirror will be used as the core library for the in-
browser code editor. CodeMirror supports syntax highlighting 
for multiple programming languages and integrates well with 
React, making it ideal for an interactive user experience. As 
users edit and review code, changes will be captured and shared 
in real time using Socket.io, enabling multiple team members to 
work together on the same file simultaneously. The lang-map 
library will be used to dynamically detect the programming 
language being edited, ensuring that the correct syntax 
highlighting, and complexity analysis rules are applied based on 
the language. 

In addition to real-time collaboration, users will have the 
option to download the reviewed code or complexity reports for 
offline use. This will be facilitated by the file-saver and jszip 
libraries. Once a review session is complete, users can generate 
a ZIP file of the code and its corresponding complexity analysis 
results. The file-saver library will enable users to download files 
directly from the browser, while jszip will compress multiple 
files into a single package, ensuring efficient file management 
and distribution. This combination of real-time interaction and 
offline functionality ensures that the collaborative code review 
process remains flexible, allowing teams to work both 
synchronously and asynchronously as needed. 

F.  Implementation 

The unified framework is built using a combination of Java 
for the backend server and JavaScript with React for the front-
end interface. The system is integrated with version control 
systems like Git, allowing it to automatically update complexity 
metrics as the codebase evolves. Real-time collaboration 
features are implemented using Socket.io, enabling seamless 
communication and live updates between users. 

1)  Real-Time Collaboration with Socket.io 
Real-time collaboration is a critical component of the 

system, implemented using Socket.io. This library allows 
seamless, bidirectional communication between the server and 
clients, ensuring that updates are reflected immediately for all 
users. 

Whenever a user interacts with the code editor (e.g., edits 
code, adds comments, or performs reviews), these actions are 
sent via a WebSocket connection to the server. The server then 
broadcasts these changes to other connected users, enabling 
them to see the updates in real-time. This feature is particularly 
useful for collaborative code reviews, where multiple users can 
simultaneously review and comment on code complexity. 

2)  File Handling with File-Saver 
In this system, the File-Saver library is used to allow users 

to upload, handle, and interact with multiple source code files in 
real time. Instead of generating reports or complexity results, the 
File-Saver functionality helps users save their uploaded files 
locally after editing or interacting with them, preserving their 
changes. This ensures a smooth workflow for users who need to 
manage multiple files while working collaboratively. 

When users upload multiple source code files to the system, 
they can edit, review, or interact with them in real time. To 
facilitate saving these files back to the local system with the 
changes applied, File-Saver is employed to download the 
modified files. This provides a seamless experience, allowing 
users to easily manage their source code during collaborative 
sessions. 

3) Code Execution with Piston API 
For dynamic code analysis and execution, the system uses 

the Piston API [19]. The Piston API is an open-source multi-
language code execution engine that allows the execution of 
code in various languages. 

When the user uploads or inputs code into the system, the 
backend sends the code to the Piston API for execution and 



 

 

retrieves results like output, error messages, or performance 
metrics (e.g., time taken to execute).  

4) Complexity Calculation with Custom Java API 
For dynamic code analysis and complexity metric 

calculations, the system employs a custom-built Java API 
designed to compute various metrics such as Time Complexity, 
Cyclomatic Complexity, Lines of Code (LOC), and 
Maintainability Index. This Java API was developed in-house to 
complement existing solutions like the Piston API, which, while 
effective for executing code in multiple languages, does not 
provide built-in functionality for calculating code complexity 
metrics. 

When users upload or input their code into the system, the 
backend forwards the code to the custom Java API for analysis. 
The API runs the necessary algorithms to compute the required 
complexity metrics and returns results like time complexity, 
error messages, and other performance metrics. This integration 
ensures precise calculations, which are critical for both real-time 
collaboration and individual analysis workflows. 

The Java API is built using Java Spring Boot and offers high 
performance and flexibility. It can handle multiple programming 
languages while maintaining accuracy in complexity 
calculations. The key metrics calculated by the API include: 

• Lines of Code (LOC): This metric counts the total lines 
in the code, focusing on executable statements and 
omitting comments and white spaces. 

• Halstead Metrics: These metrics help analyze the 
overall complexity and effort required for 
understanding and maintaining the code. 

• Nesting Depth: This metric evaluates the depth of loops 
or conditional statements, which can indicate higher 
complexity when deep nesting is present. 

• Maintainability Index: This index is calculated based 
on several factors, including the above metrics, to 
assess the overall maintainability of the code. 

By integrating this custom Java API, the system offers 
accurate and efficient complexity analysis that goes beyond 
simple code execution, providing developers with actionable 
insights to improve code quality and maintainability. 

5) Version Control and Automatic Updates 
The system integrates with Git to track code changes and 

calculate complexity metrics based on the latest version of the 
codebase. Whenever new changes are pushed or committed to 
the repository, the system triggers a re-calculation of key metrics 
like Lines of Code (LOC), Cyclomatic Complexity, and 
Maintainability Index. This ensures that the metrics stay up-to-
date with the evolving codebase, and users can view these 
changes directly from their dashboards. 

The backend monitors the repository for changes and 
automatically recalculates the code complexity metrics. Users 
can access reports that show how the code's complexity evolves 
over time, which is useful for project management and planning. 

The integration of various technologies such as Socket.io for 
real-time collaboration, File-Saver for easy downloading of 

source code files, the Piston API for executing code across 
multiple programming languages, and CodeMirror for an 
interactive code editor collectively forms a robust and efficient 
system for measuring and analyzing code complexity. This 
synergy not only enhances user experience but also fosters a 
collaborative environment where developers can work together 
seamlessly, regardless of their physical locations. 

Socket.io enables instantaneous communication between 
users, allowing them to see each other’s changes in real time, 
discuss code issues, and provide feedback on complexity metrics 
as they are being analyzed. This feature significantly accelerates 
the review process and minimizes the chances of 
miscommunication that often arise in traditional code review 
settings. 

File-Saver facilitates the easy export and downloading of 
files, empowering users to preserve their edited code and 
analysis results locally. This functionality ensures that 
developers can maintain a clear version history and access their 
work without dependency on continuous internet connectivity. 
Being able to save and manage files directly enhances 
productivity and encourages users to experiment and iterate 
without fear of losing their changes. 

Meanwhile, the Piston API allows for dynamic code 
execution, enabling the application to run code snippets in 
various programming languages. This capability provides 
immediate feedback on code behavior, which is essential for 
assessing performance and identifying potential complexity-
related issues. By integrating execution results with complexity 
metrics, developers gain a holistic view of their code’s quality 
and maintainability. 

The inclusion of CodeMirror as the primary code editor 
enriches the user interface with features like syntax highlighting, 
code folding, and autocompletion. This interactivity not only 
makes coding more efficient but also encourages best practices 
by helping users adhere to coding standards through visual cues. 

Furthermore, the system’s integration with version control 
systems like Git ensures that code metrics are continuously 
updated in alignment with the codebase's evolution. This 
dynamic updating allows teams to track changes effectively, 
making informed decisions throughout the software 
development lifecycle. By linking complexity metrics to 
specific code versions, the system helps identify how changes 
affect code quality over time. 

In summary, this combination of advanced technologies 
creates a seamless and efficient environment for developers. The 
application supports continuous improvement in code quality 
through real-time collaboration, easy file management, dynamic 
execution feedback, and an interactive coding experience, 
ultimately leading to better maintainability and reduced 
technical debt. 

 

Overall system functionalities of the CCMM are illustrated 
in Figure 2. 



 

 

 
Figure 2. Higher Level View Of CCMM 

IV. RESULTS 

We successfully managed to implement CCMM. Not only it 
provides a basis for project code analysis, but also provides very 
user friendly and easy navigate interface to satisfy its users. 
Some of the functionalities that help users, performed by 
CCMM are demonstrated below. It provides an easy navigate 
buttons, easy access text area to paste your code, user friendly 
view of provided code and very clear results in every page of 
CCMM. 

 
Figure 3. Navigation 

In addition to its intuitive navigation and user-friendly 
interface, the Code Complexity Measuring Machine (CCMM) 
ensures that the complexity metrics are clearly defined in a way 
that users of all levels can easily understand. Each metric, such 
as Lines of Code (LOC), Nested Loop Depth, Halstead 
Complexity Metrics, and Maintainability Index, is accompanied 
by concise explanations, allowing users to interpret the results 
effectively. To enhance clarity further, CCMM uses a color-
coded system where different colors represent various levels of 
code quality and complexity. Green indicate well-optimized 
code, while red highlights sections requiring attention. This 
visual distinction helps users quickly assess their code’s status 
without delving deep into the numbers. The results are displayed 
with exceptional clarity, using well-organized text-based 
summaries, ensuring that users can effortlessly access and 
understand the analysis outcomes across every page of the 
application.  

 
Figure 4. Code Maintainability Checker 

 



 

 

 
Figure 5. Halstead Metric Calculator 

 
The UI for the collaborative application features a sidebar 

for navigation on the left, providing easy access to the project’s 
file directory and other essential sections. The live file directory 
within this sidebar allows users to see real-time updates, with 
indicators like timestamps or dots next to files being actively 
worked on. Users' avatars are shown next to the files they are 
editing, offering a clear view of who is working on what. This 
intuitive sidebar navigation simplifies project management and 
file access during collaboration. 

Integrated directly into the workspace, the chat window in 
the bottom-right allows for real-time communication, 
supporting both text and code snippets. This makes it easy for 
team members to discuss and share code without leaving the 
coding environment. Alongside the chat, a code execution panel 
enables users to run code in real-time, displaying outputs, errors, 

and logs in a terminal-like view, helping teams receive instant 
feedback on code functionality. 

Within the main code editor, the UI supports multiple user 
interactions with each user’s cursor and selections color-coded 
and labeled with their names. Real-time editing occurs 
seamlessly, with all collaborators seeing changes immediately 
as they happen. Additionally, a real-time metrics panel 
dynamically updates important coding metrics such as 
cyclomatic complexity and lines of code as the code evolves. 
These live metrics ensure that the entire team can monitor the 
quality and complexity of the project as they work together. 
Overall, the application offers a smooth, real-time collaborative 
experience with a sidebar-driven navigation for enhanced 
usability. 

 

 
Figure 6. Shared Environment: Files 

 
Figure 7. Real time Complexity Measurements 

 
Figure 8. Code Execution 

 



 

 

 
Figure 9. Chat and Realtime Collaborative Coding 

These features work together to create a highly interactive 
and collaborative coding experience, allowing developers to 
streamline their workflow and focus on enhancing code quality. 
The integration of real-time collaboration with team members to 
work simultaneously on the same codebase, sharing insights, 
adding comments, and discussing issues without any delays. 
This real-time interaction ensures that feedback is immediate, 
fostering an environment where problems can be resolved 
quickly, and ideas can be shared openly. As a result, the 
collaborative process becomes more efficient, reducing the time 
spent on traditional code reviews and facilitating a smoother 
transition from development to deployment. 

V. DISCUSSIONS 

The Code Complexity Measuring Machine (CCMM) has 
proven to be a powerful tool for assessing and improving the 
quality of software projects. By offering comprehensive 
complexity metrics like Lines of Code (LOC), Cyclomatic 
Complexity, Halstead Metrics, and the Maintainability Index, 
CCMM allows developers to gain valuable insights into their 
codebase's structural and logical intricacies. These metrics not 
only help in identifying potential problem areas but also guide 
developers in making informed decisions about refactoring, 
optimizing, and maintaining their code. With this detailed 
understanding of the code's complexity, developers can better 
manage technical debt and improve the overall stability and 
performance of their software. 

One of the key strengths of CCMM is its focus on user 
experience. The design of a user-friendly interface with easy-to-
navigate buttons and text areas simplifies the process of code 
input and analysis. Users can quickly paste their code, initiate 
analysis, and view results without needing extensive training or 
technical expertise. This ease of use significantly lowers the 
barrier to entry, making the tool accessible to both novice 
programmers and experienced developers. The integration of 
color-coded metrics further enhances user comprehension, 
allowing for quick visual identification of code areas that require 
optimization. For example, colors like green, yellow, and red 
signify different states of code quality, from well-optimized to 
high complexity or potential error-prone areas, making it easier 
for developers to focus on sections that need immediate 
attention. 

The inclusion of real-time collaboration features, enabled by 
Socket.io, adds significant value to the system, transforming 

CCMM from a static analysis tool into a dynamic, interactive 
platform. This feature supports multiple users working together 
on the same project, making it an ideal choice for teams working 
in agile or distributed environments. The ability to see changes 
and comments in real-time not only speeds up the review 
process but also ensures that complexity-related issues are 
addressed collaboratively, fostering a culture of continuous 
improvement. This aspect of CCMM aligns well with modern 
development practices where collaboration and communication 
are critical to the success of software projects. It enables 
developers to conduct live discussions and peer reviews directly 
within the tool, leading to quicker identification of issues and 
faster resolution. 

Furthermore, the custom-built Java API used in CCMM 
provides precise calculations for key metrics like Nesting Depth, 
Maintainability Index, and Halstead Metrics, making it possible 
to analyze various dimensions of code complexity with a high 
degree of accuracy. This feature is especially important when 
dealing with large codebases where even small inefficiencies 
can lead to significant performance issues. By using a tailored 
solution that focuses on these detailed metrics, CCMM provides 
a more specialized and in-depth analysis compared to 
generalized tools. This helps teams not only to maintain high 
code quality but also to plan future development phases more 
effectively by identifying complex modules that might require 
extra testing or refactoring. 

Despite its many strengths, there are some areas where 
CCMM could be further enhanced. For example, while the 
Piston API allows for code execution across multiple languages, 
its role in complexity analysis could be expanded to include 
more detailed performance metrics like execution time profiling 
and memory usage statistics. Such features would allow 
developers to see not only how complex their code is but also 
how it performs in real-time, providing a more holistic view of 
code efficiency. Additionally, the integration of more advanced 
visualizations, such as heatmaps for code hotspots or interactive 
dependency graphs, could offer deeper insights into complex 
codebases. Such enhancements could help developers better 
understand the relationships between different parts of the code, 
leading to more effective optimizations. This would be 
particularly beneficial for teams working on large-scale systems 
where understanding module interactions is critical to 
maintaining stability. 

Another potential improvement could involve expanding the 
scope of CCMM's collaborative features. Adding capabilities 
such as a history of changes or version comparison directly 
within the tool could further aid in tracking progress over time. 
These features would enable users to see how their code's 
complexity has evolved throughout the project lifecycle, 
allowing for retrospective analysis and better understanding of 
the impact of refactoring efforts. This could also be beneficial in 
educational settings, where instructors could use CCMM to 
track the progress of students as they learn to write more 
efficient and maintainable code. 

Overall, the implementation of CCMM has achieved its 
primary goals, providing a robust framework for code analysis 
while maintaining a focus on user satisfaction. The combination 
of precise complexity metrics, intuitive design, and real-time 



 

 

collaborative capabilities makes CCMM a valuable asset for 
development teams aiming to improve code quality and 
maintainability. As the complexity of software projects 
continues to grow, tools like CCMM will play a crucial role in 
helping teams manage technical debt, optimize performance, 
and ensure long-term project success. Additionally, with further 
improvements, CCMM could become a benchmark tool for not 
only development teams but also educational institutions, 
helping to build a foundation of best practices in coding, 
collaboration, and complexity management. 

 

VI. CONCLUSION 

The Code Complexity Measuring Machine (CCMM) 
application provides a comprehensive solution for analyzing, 
evaluating, and managing the complexity of software code, 
making it an essential tool for modern software development. 
By integrating multiple complexity metrics such as Lines of 
Code (LOC), Cyclomatic Complexity, Halstead Metrics, 
Nesting Depth, and the Maintainability Index, the system 
empowers developers to gain a thorough understanding of the 
quality and maintainability of their codebase. These metrics 
offer insights into different aspects of the code, from the density 
and intricacy of logic to the ease with which code can be 
understood, tested, and modified. This holistic approach helps 
developers address both immediate code issues and long-term 
maintainability, facilitating higher code quality throughout the 
development lifecycle. 

The application goes beyond traditional static code analysis 
by offering real-time collaboration features and dynamic file 
handling, which are crucial for software development teams 
operating in distributed or agile environments. The ability to 
collaboratively review and refine code in real-time helps teams 
catch potential issues early, reducing the need for extensive 
reworks later in the development process. With React as the 
front-end framework, the application offers a responsive and 
user-friendly interface, enabling developers to interact 
seamlessly with the system. Socket.io ensures that changes are 
propagated instantly among team members, keeping everyone in 
sync, while CodeMirror provides an interactive coding 
experience with syntax highlighting and other helpful features 
for editing code. 

The system's backend, powered by a custom Java API built 
with Spring Boot, is designed to fill the gaps left by existing 
code execution tools like the Piston API. While the Piston API 
facilitates multi-language code execution, it lacks native support 
for complexity metric analysis. The custom API addresses this 
by providing robust and precise calculations for critical metrics, 
such as LOC, Halstead Metrics, and maintainability indices. By 
offering these detailed outputs, the application allows 
developers to assess the complexity of their codebase from 
multiple perspectives, enabling them to identify bottlenecks, 
understand how different parts of the code interact, and make 
informed decisions regarding optimization and refactoring. This 
deeper level of analysis supports teams in producing code that is 
not only functional but also maintainable and scalable. 

A major strength of CCMM lies in its real-time collaboration 
capabilities, which significantly enhance team productivity. The 

Socket.io integration allows multiple users to simultaneously 
edit, comment on, and review code, enabling teams to discuss 
potential complexity issues as they emerge. This level of 
interactivity is particularly valuable in scenarios where quick 
feedback is needed, such as during code reviews or pair 
programming sessions. The CodeMirror editor complements 
this by providing a familiar coding environment that supports 
multiple programming languages, making it easier for team 
members to navigate and modify code. By catching issues early 
through collaborative review, CCMM helps teams maintain a 
steady pace without compromising code quality. 

File-Saver plays a crucial role in file management, enabling 
users to save and export their code files directly from the 
browser. This feature allows developers to keep a local copy of 
their progress, preserving changes and enabling easy rollbacks 
if needed. This ability to manage source code files efficiently 
ensures that developers can maintain an organized workflow, 
even when handling complex projects with multiple files. 
Additionally, the integration of File-Saver facilitates seamless 
interaction with source files during collaborative sessions, 
allowing users to export their work in a consistent format, 
ensuring compatibility with other tools and platforms used by 
the team. 

The application’s custom Java API further enhances the 
workflow by performing real-time calculations of complexity 
metrics, such as Nesting Depth, which measures the depth of 
nested loops and conditionals, and Halstead Metrics, which 
analyze the complexity of operations and operands. By 
providing immediate feedback on how these metrics change as 
code is edited, CCMM enables a continuous improvement 
process. Developers can see the direct impact of their refactoring 
efforts, making it easier to achieve the desired balance between 
performance and maintainability. This continuous feedback 
loop encourages a culture of ongoing refinement and adherence 
to best coding practices, ensuring that the codebase remains 
maintainable and efficient as it evolves. 

Beyond individual projects, CCMM also serves as a valuable 
tool for larger teams and organizations. Its ability to integrate 
with version control systems like Git means that complexity 
metrics can be updated automatically as code changes are 
committed, allowing teams to monitor the quality of their 
codebase over time. This feature is especially useful for tracking 
the effectiveness of refactoring efforts or assessing the impact of 
new features on the overall complexity of the project. By linking 
complexity data directly to version control, CCMM provides 
teams with a historical view of their codebase's evolution, 
enabling data-driven decision-making and better long-term 
planning. 

In summary, the Code Complexity Measuring Machine 
(CCMM) is a fully-featured platform that not only aids 
developers in analyzing their code but also fosters a 
collaborative and continuous improvement environment. Its 
ability to provide precise complexity metric calculations, 
combined with real-time collaboration and robust file 
management, addresses the growing needs of modern 
development teams. CCMM supports efficient, high-quality 
code production, reducing technical debt, improving 
maintainability, and ensuring long-term software quality. As 



 

 

software systems continue to increase in size and complexity, 
tools like CCMM are indispensable for maintaining the balance 
between innovation and stability, making it an invaluable asset 
for any development project. 
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